Schrödingergleichung(Eine kurze Notiz) Die Schrödingergleichung ist die Bewegungsgleichung der nicht relativistischen Quantenphysik. Gibt es Analogien zu den Bewegungsgleichungen der klassischen Physik? Schrödingergleichung für den potentialfreien Fall (V = 0): > sgl:=I*h*diff(psi(x,t),t)=-h^2/(2*m)*diff(psi(x,t),x$2); 
 Eine möglichst allgemein formulierte Lösung der SGL besteht aus einer reellwertigen Amplitude (Funktion von Ort und Zeit) und der Wirkungsfunktion des Systems als Phase (Notation: h statt h-quer): > u:=A(x,t)*exp(I/h*S(x,t)); 
 Was passiert, wenn wir diese Wellenfunktion in die SGL einsetzen? > psi:=(x,t)->u; 
 > sgl; 
 Umformen > gl:=sgl/u; 
 > gl:=simplify(gl); 
 > gl:=expand(gl); 
 
 Wenn diese Gleichung erfüllt sein soll, so muß sie für den Realteil und den Imaginärteil erfüllt sein. Realteil: > -evalc(Re(lhs(gl)))=-evalc(Re(rhs(gl))); 
 Der Gradient der Wirkungsfuktion ist der Impuls. Also steht hier fast die Hamilton-Jacobi-Gleichung - nur mit einem Zusatz, der die Dimension eines Potentials hat und mit h**2 geht. Bohm nennt ihn das Quantenpotential (das für h -> 0 verschwindet). Imaginärteil: > igl:=evalc(Im(lhs(gl)))=evalc(Im(rhs(gl))); 
 > igl:=igl*A(x,t)/h; 
 > igl:=expand(igl); 
 Das sieht nach einer Kontinuitätsgleichung aus, wenn man nämlich die Amplitude mit der Wurzel einer Teilchendichte identifiziert: > subs(A(x,t)=sqrt(rho(x,t)),igl); 
 > eval(%); 
 > %*2*sqrt(rho(x,t)); 
 > expand(%); 
 Und dieser Zusammenhang führt bekanntlich auf die statistische Interpretation der Quantenmechanik. c ITP Bonn 1995 filename: schroe.ms Autor: Komma, Datum: 27.1.94  | 
  |
      
  |