Bahnen einer elektrischen Ladung im Dipolfeld 
	Wir kennen alle ein beliebtes Experiment zur Einführung in 
	das Thema "Elektrisches Feld". Man lässt einen Bandgenerator laufen, und 
	freut sich, dass die Funken springen. Dann fragt man wie der Funke von einem 
	Pol zum anderen kommt. Aha! Da muss etwas zwischen den Polen sein. Wir 
	nennen es das elektrische Feld, und stellen es durch Linien mit Pfeilen von 
	der Quelle (+) zur Senke (-) dar. Die einfachste Feldlinie zeigt uns der 
	Funke, nämlich die kürzeste Verbindung von (+) und (-). Aber das elektrische 
	Feld sollte doch im gesamten Raum vorhanden sein! Wie findet man die 
	"restlichen" Feldlinien? In so manchen Lehrbüchern werden die Feldlinien mit 
	einem Wattebausch gefunden, der entlang der Feldlinie von einem Pol zum 
	anderen fliegt. 
      
     | 
  
    
      
        
          Wer gerade keinen Wattebausch zur Verfügung hat, kann 
			auch ein geeignetes Programm nehmen: 
			 
			 
			Angenommen wir haben einen
            elektrischen Dipol mit der positiven Ladung 1.5 (rot) und der
            negativen Ladung 1 (blau).
            Dann sieht das Potential so aus: 
           | 
           
           |  
        
          | Oder von oben betrachtet
            (ergänzt durch Feldlinien, die immer senkrecht auf den
            Äquipotentiallinien stehen):
           | 
           
           | 
         
        
          | Wie bewegt sich ein
            geladenes Teilchen in diesem Feld (in einer Ebene, in der die
            Quellen (und Senken) liegen)?
               
            Sieht ziemlich kompliziert aus! 
              
            Wovon der Verlauf der Bahnkurve wohl
            abhängt? 
           | 
           
           | 
         
        
          | Anscheinend verläuft die
            Bahn (schwarz) nicht den Feldlinien (rot) entlang.
           | 
           
           | 
         
        
          | Wobei negative Ladungen
            den Potentialberg (rot) hinauflaufen.
           | 
           
           | 
         
        
          | Oder in den
            Potentialtrichter (rot) fallen, wenn man es von der anderen Seite
            sieht.
             Jedenfalls sollte man sich nicht
            wundern, wenn der Wattebausch nicht immer so fliegt, wie es in
            manchem Lehrbuch steht, nämlich entlang einer Feldlinie. (Beim Wurf 
			im Schwerefeld hält sich der Stein ja auch nicht an die Richtung der 
			Feldlinien ;-)) 
           | 
           
           | 
         
        
       
      Siehe auch: 
		Darstellung
      des elektrischen Feldes zweier Punktladungen 
		  
     |